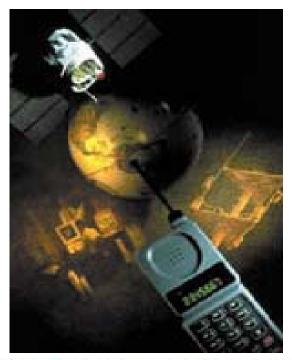
Matt Trezise Duncan Boyd October 18, 2000

Practical Noise Figure

Measurements

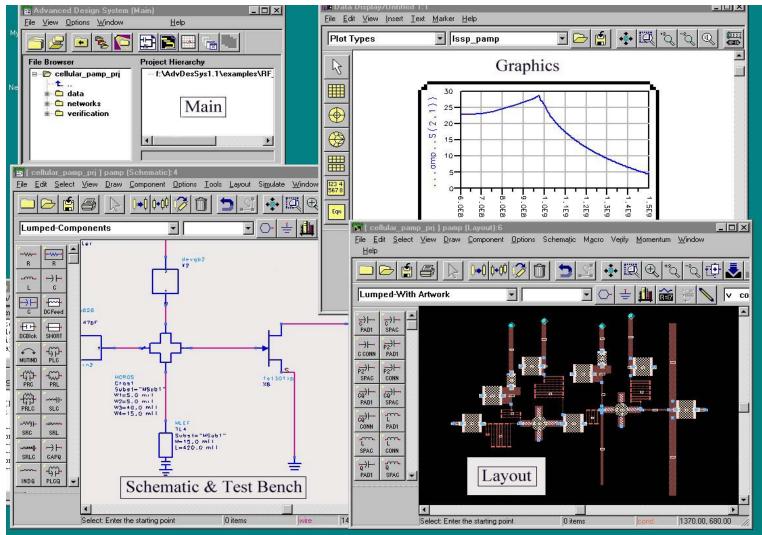
Including an example LNA design



- Motivation
- Model a low noise amplifier block on ADS
- Practical noise figure measurements of the prototype amplifier
- Narrow band noise figure measurements
- Measurement Uncertainty

Motivation

- RF Communications
- Point to Point Radio / Wireless LAN
- Satellite Communications
- Wireless LAN
- Global Positioning System
- Defense and Radar

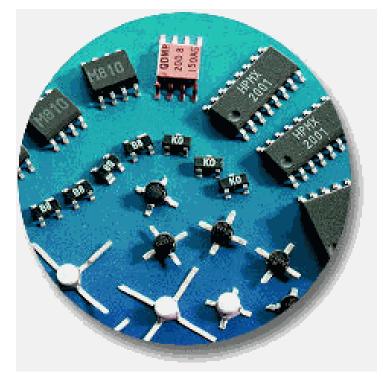


Agenda

- Motivation
- Model a low noise amplifier block on ADS
- Practical noise figure measurements of the prototype amplifier
- Narrow band noise figure measurements
- Measurement uncertainty

ADS Presentation Windows

Page 5



Example Low Noise Amplifier Design Process using ADS

- Functional requirements
- Device selection
- Design
- Layout

Page 6

• Performance analysis and optimization

Amplifier Functional Requirements

- Frequency Range : 1.5GHz to 2.5GHz
- Noise figure : < 1dB
- Gain : >10dB
- VSWR : < 2.0:1
- Low voltage supply : ideally 3v
- Distributed matching (microstrip) to reduce cost

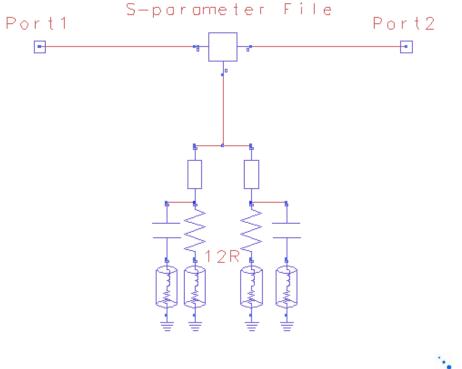
Device Selection

- GaAs, SiGe, HEMPT, PHEMPT?
- S-Parameter/Noise data on Web
- Choose ATF34143 PHEMPT from Agilent
 - 0.5dB Noise Figure
 - Good Dynamic Range
 - Reasonably easy to match

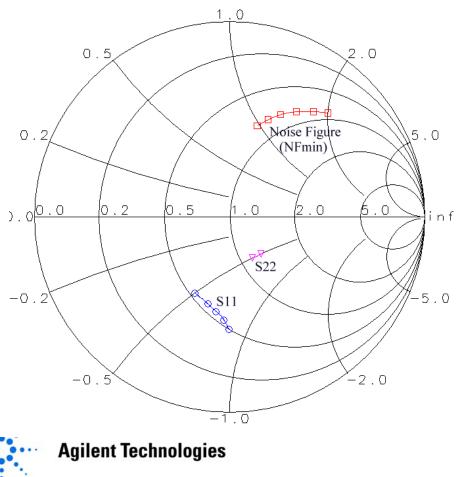
Noise and

S-Parameters File

	ATE-	34143		S PAF	RAMETER	S		
	Id =	20 mA		LAST	UPDATE	D 2/0	6/99	
FREQ	S	11	S21		S1	2	S	22
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
.50	.96	-37	10.08	153	.035	68	.4	-35
.80	.91	-60	9.642	137	.050	56	.34	-56
.00	.87	-76	8.867	126	.061	48	.32	-71
.50	.81	-104	7.443	106	.077	34	.29	-98
.80	.78	-115	6.843	98	.083	28	.28	-110
.00	.75	-126	6.306	90	. 088	23	.26	-120
.50	.72	-145	5.438	75	.095	15	.25	-140
.00	.69	-162	4.762	62	.102	7	.23	-156
.00	.65	166	3.806	38	.111	-8	.22	174

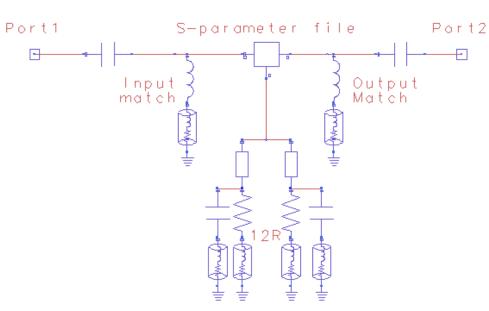


:


12

Modeling the raw device

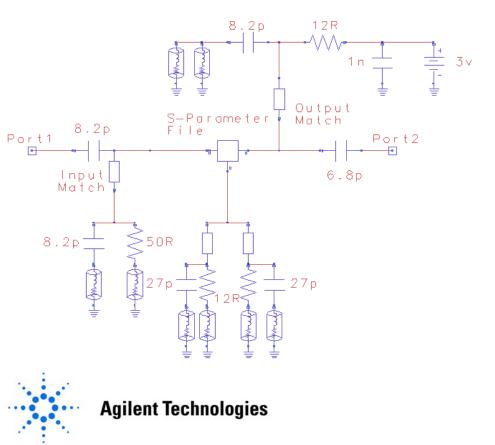
 Model of raw device with Source Resistance for self bias


• Noise and S-Parameters

Matching the device

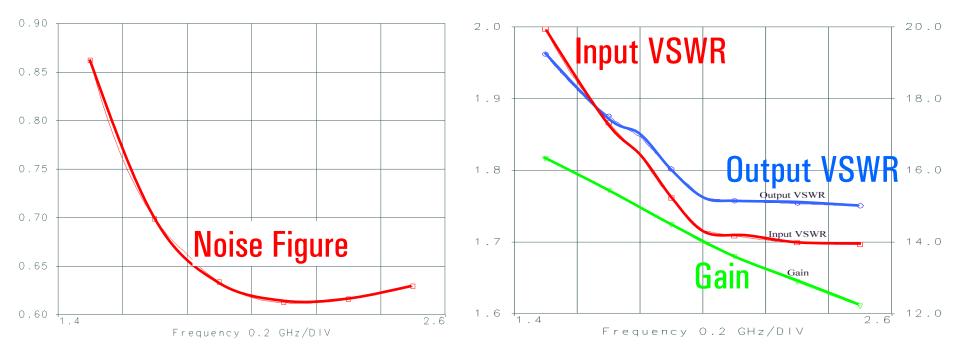
- Circuit looks capacitive
 - Use High-pass arrangement
- To synthesize matching networks
 - Calculator
 - Smith chart
 - Use Esyn in ADS
 - Use Optimizer in ADS

Simple high-pass impedance match



Agilent Technologies

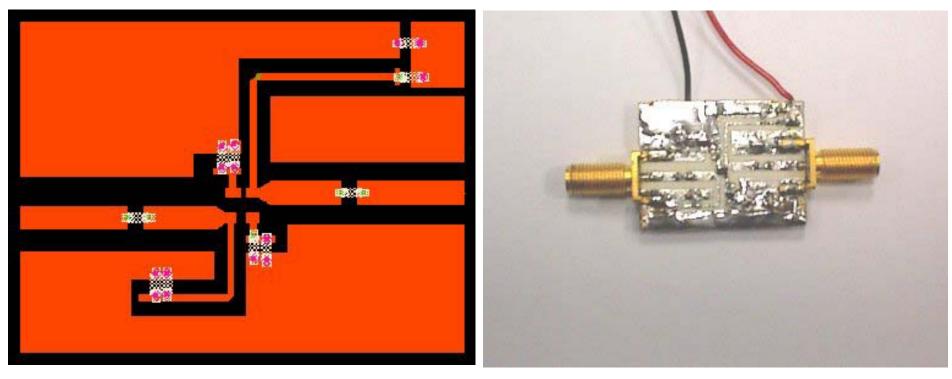
Complete Model of the Amplifier


- Inductors replaced by distributed elements
- Discretes replaced by vendor parts
- Output match
- Through hole vias included
- Stabilization added
- ADS Optimizer to re-tune values

Simulation Results

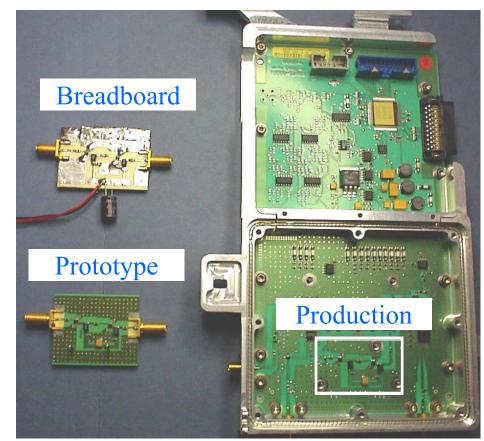
Noise Figure

Gain and Match



Agilent Technologies

Layout and Prototype

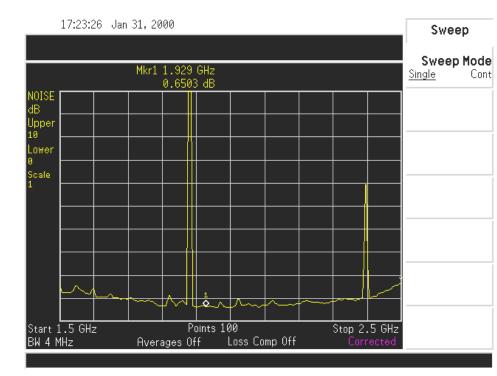

Layout generated from Breadboard amplifier schematic

NFA Series RF Development Iterative design Process

- Model on ADS
- Build a breadboard
- Measure on an 8970B and make modifications
- Build a Prototype
- Measure on an 8970B and make modifications
- Production

Agilent Technologies

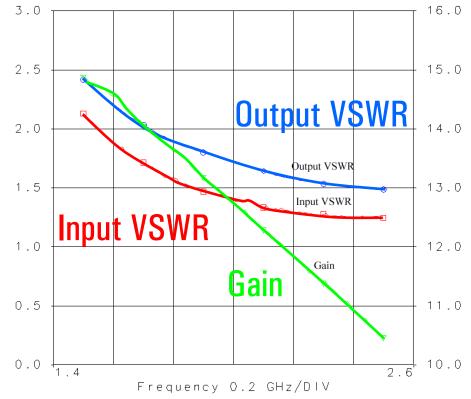
Agenda


- Motivation
- Model a low noise amplifier block on ADS
- Practical noise figure measurements of the prototype amplifier
- Narrow band noise figure measurements
- Measurement uncertainty

Agilent Technologies

Noise Figure Measured on the NFA-Series N8973A

- Connect the noise source
- Perform a user calibration
- Connect the LNA between the noise source and the instrument
- Measure corrected Noise Figure, gain,
- Spikes are mobile phone transmissions getting into the unscreened circuit

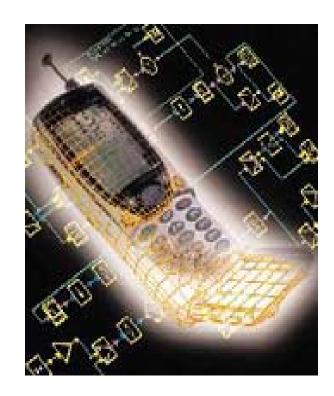


Network Measurements

- Gain and Match
- Network Analyzer connected to ADS via GPIB

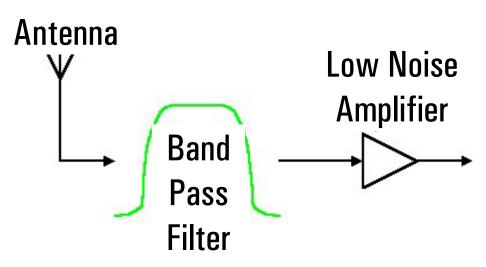
Page 17

Agenda


- Motivation
- Model a low noise amplifier block on ADS
- Practical noise figure measurements of the prototype amplifier
- Narrow band noise figure measurements
- Measurement Uncertainty

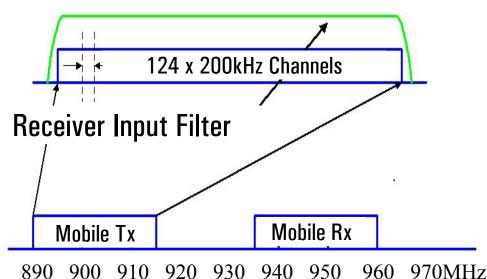
Page 18

Narrow Band Noise Figure


- Noise Figure in a 4MHz band
 - Measurement time
 - Accuracy
 - Device bandwidth
- Modern applications are much more demanding
 - Measurement bandwidth
 - Narrow band measurement technique required

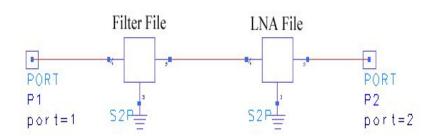
Base Station/Mobile Front-end

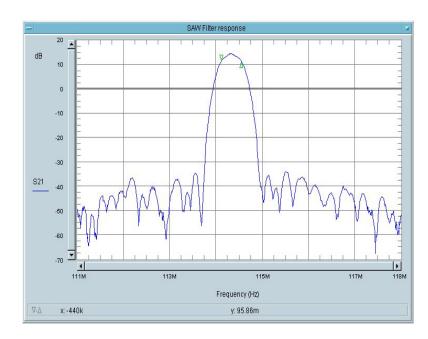
- Noise Figure critical
 - Isolator
 - High Q bandpass filter
- Very low noise amplifier
- Beyond Front-end, Noise Figure less important
 - Front-end gain reduces the effects



Simplified Receiver Front End

Why are Narrow Band measurements important?

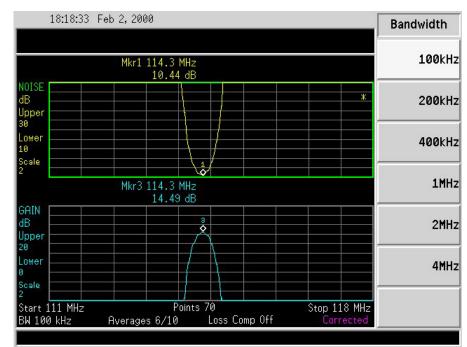

- Using GSM as an example
 - Band is 25MHz wide
 - 124, 200kHz channel
- Filter rolls off
 - Risk of higher loss before LNA
 - Risk of higher noise figure
 - Risk of poor performance in channels near band edges



Narrow Band Example

- Combine a narrow band filter (~440kHz) with an amplifier
- Model using ADS
- Check the response on a network analyzer for reference

• Network measurement of Filter/Amplifier



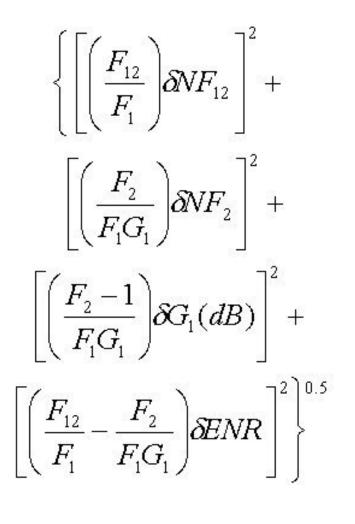
Narrow band Measurements using the NFA-Series N8973A

Measurement with 4MHz bandwidth

18:21:52 Feb 2, 2000 Bandwidth 100kHz Mkr1 114.3 MHz 19.85 dB OISE 200kHz lpper ower 400kHz 10 Scale 1MHz Mkr3 114.3 MHz 4.883 dB GAIN łΒ 2MHz Jpper ower 4MHz 0 icale Points 70 Start 111 MHz Stop 118 MHz BW 4 MHz Loss Comp Off Averages Off

Measurement with 100kHz bandwidth

Agenda


- Motivation
- Model a low noise amplifier block on ADS
- Practical noise figure measurements of the prototype amplifier

Agilent Technologies

- Narrow band noise figure measurements
- Measurement uncertainty

Measurement Uncertainty

- Extraneous signals
- Non-linearity's
- Instrumentation uncertainty
- ENR uncertainty
- Mismatch
- Measurement architecture
- Instrument Noise Figure
- Unwanted in-band power

Web Based Measurement Uncertainty Calculator

Calculator

Data Entry

Calculator	Tabular Results Button to reset the form to defi	Graphical Result	
Press this Device Ur Noise Source			
Noise Source Defaults		Instrument Defaults	
HP346 B	-	HP8970 B	
ENR Uncertainty (+/-dB)	DUT Noise Figure, NF1 (dB)	Noise Fig. Uncertainty (+/-dB)	
0.1	3	0.05	
NS Match *	DUT Gain, G1 (dB)	Gain Uncertainty (+/-dB)	
1.15	20	0.15	
	DUT Input Match *	Instrument Noise Fig, NF2 (dB)	
	Do'r input Materi "		
	1.5	5	
	1.5	5	
Parameter Sweep NONE * This term can be entered in dB(1.5 DUT Output Match *	5 Instrument Match * 1.8 Upper Value Number of Points	

Results

Tabular Results

Graphical Results

	Contributors	Contribution (dB)
Coefficient	Factors	
10/54)	- Mismatch between the noise source and the DUT	0.133
12/F1)	- Instrument noise figure measurement uncertainty	J
2/54.042	- Mismatch between the noise source and the instrument	0.003
2/F1G1)	- Instrument noise figure measurement uncertainty	J
	- Mismatch between the noise source and the DUT	0.006
2 - 1)/(F1G1))	- Mismatch between the noise source and the Instrument	
2-1)(F101))	- Mismatch between the DUT and the instrument	
	- Instrument gain measurement uncertainty	J
12/F1)-(F2/F1G1)	- Noise source ENR uncertainty	0.099

The uncertainty calculator can be found at www.agilent.com/find/nfu

Page 26

Noise Figure Test Solutions from Agilent

NFA-Series Noise Figure Analyzers N8972A - 10MHz to 1.5GHz
N8973A - 10MHz to 3.0GHz
N8974A - 10MHz to 6.7GHz
N8975A - 10MHz to 26.5GHz

SNS-Series Noise Sources
 N4000A - 10MHz to 18GHz nominal ENR 6dB
 N4001A - 10MHz to 18GHz nominal ENR 15dB
 N4002A - 10MHz to 26.5GHz nominal ENR 15dB

